ANTI - ARRYTHMATICS

By

Mr. Y Pradeep Kumar Associate Professor Annamacharrya College of Pharmacy.

Subject Name : Medicinal Chemistry

ANTI ARRYTHMATICS

- Anti arrhythmics ???? -
- In a textbook Interesting but sedative.
- Try it if you have insomnia
- –In the lecture
 Confusion ???????? •
- As always -
- In the exam hall
 Panic! Don't worry rarely asked

A-RHYTHM –IA

 Defn- Arrhythmia is deviation of heart from normal RHYTHM.
 Sino-atrial node Atrio-ventricular node

- RHYTHM
- 1) HR- 60-100
- 2) Should origin from SAN

 Cardiac impulse should propagate through normal conduction pathway with normal velocity.

Arrhythmia

- Arrhythmia is an abnormality of rate, regularity, or site of origin of the cardiac impulse or a disturbance in conduction.
- These symptoms cause an alteration in the normal sequence of activation of the atria and ventricles.
 Ventricular arrhythmias are
- Renign, potentially malignant and malignant based on the risk of their causing sudden death.

TYPES OF ARRYTHMIAS

500	Atrial fibrillation	
350	Atrial flutter	
200	Paroxysmal TA	
150	Simple tachyarrythmia	

100 60	Normal range	
40	Mild bradyarrhythmias	
20	moderate BA	
	Severe BA	

ARRHYTHMIAS

Electrophysiology of cardiac tissue

- Impulse generation and transmission
- Myocardial action potential
- Depolarization and repolarization waves as seen in ECG

TYPES OF CARDIAC TISSUE (ON THE BASIS OF IMPULSE GENERATION)

- AUTOMATIC/ PACEMAKER/ CONDUCTING FIBRES (Ca++ driven tissues)
- Includes SA node, AV node, bundle of His, Purkinje fibresCapable of generating their own impulse
- □Normally SA node acts as Pacemaker of heart
- NON-AUTOMATIC MYOCARDIAL CONTRACTILE FIBRES
- (Na+ driven tissues)
- Cannot generate own impulse
- □Includes atria and ventricles

ACTION POTENTIAL IN NON AUTONOMIC MYOCARDIAL TISSUE

ACTION POTENTIAL IN NODAL TISSUE

Fast channel Vs slow channel AP

Fast channel AP

- Occurs in atria, ventricles, PF
- Predominant ion in phase-0 is Na+
- Conduction velocity more
- Selective channel blocker is tetradotoxin , LA

Slow channel AP

- Occurs in SA node, A-V node
- Predominant ion in phase-0 is Ca²⁺
- Less
- Selective channel blockers are calcium channel blockers

COMMON TERMS

Automaticity – Capacity of a cell to undergo spontaneous diastolic depolarization

- Excitability Ability of a cell to respond to external stimulus by depolariztion
- Threshold potential Level of intracellular negativity at which abrupt and complete depolarization occurs.

Conduction velocity of impulse – Determined primarily by slope of action potential and amplitude of phase-0, any reduction in slope leads to depression of conduction

Propagation of impulse – Depends on ERP & Conduction velocity

MECHANISMS OF CARDIAC ARRYTHMIA

- Abnormal impulse generation:
- Depressed automaticity
- Enhanced automaticity
- Triggered activity (after depolarization):
- Delayed after depolarization
- Early after depolarization
- Abnormal impulse conduction:
- Conduction block
- Re-entry phenomenon
- Accessory tract pathways

CLASSIFICATION BASED ON CLINICAL USE

- Drugs used for supraventricular arrhythmia`s
- Adenosine, verapamil, diltiazem
- Drugs used for ventricular arrhythmias
- Lignocaine, mexelitine, bretylium
- Drugs used for supraventricular as well as ventricular arrhythmias
- Amiodarone, blockers, disopyramide, procainamide

CLASSIFICATION

Class-I: Membrane stabilizing agents (Na⁺ channel blockers)

- A. Moderately decrease dv/dt of 0 phase
 - ► QUINIDINE
 - ► PROCAINAMIDE
 - ► DISOPYRAMIDE
 - ► MORICIZINE
- A. Little decrease dv/dt of 0 phase
 - ► PHENYTOIN
- A. Marked decrease dv/dt of 0 phase
 - ► PROPAFENONE
 - ► FLECANIDE

CLASS-II: ANTIADRENERGIC DRUGS (B-BLOCKERS)

CLASS – III – REPOLARISATION PROLONGATORS

CLASS – IV – CALCIUM CHANNEL BLOCKERS

Class IA

QUINIDINE

Pharmacological effects threshold for excitability

automaticity prolongs AP

- 1. Used to maintain sinus rhythm after cardioversion of atrial fibrillation.
- 2. Suppression of supraventricular and ventricular arrhythmias.

Class IB drugs

Lignocaine, phenytoin, mexiletine

Block sodium channels also shorten repolarization

PROCAINAMIDE

CONHCH₂CH₂ N(C₂H₅)₂

4-amino-N-(2-diethylaminoethyl) benzamide hydrochloride

$$O_2N$$
 \longrightarrow O_2N \longrightarrow

- 1. In the treatment of ventricular arrythmias, this is resistant to lignocaide and those of following myocardial infarction.
- 2. Employed to maintain sinus rhythm after cardioversion of atrial fibrillation.

MEXILETINE

Oral analogue of lignocaine

No first pass metabolism in liver

- Use: chronic treatment of ventricular arrhythmias associated with previous MI – Unlabelled use in diabetic neuropathy
- Tremor is early sign of mexiletine toxicity
- Hypotension, bradycardia, widened QRS, dizziness, nystagmus may occur

AMIODARONE

Class – III – Repolarisation prolongators

Prolongs ventricular repolarisation and the effective refractory period.

In the treatment of supraventricular and ventricular arrythmias

SOTOLOL

is a medication used to treat and prevent abnormal heart rhythms. It is only recommended in those with significant abnormal heart rhythms due to potentially serious side effects.

Evidence does not support a decreased risk of death with long term use.

